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Summary. The new concept of the resonance energy in conjugated hydrocarbons 
introduced by Jiang Y, Zhang H (1989) Theor Chim Acta 75:279 is further 
developed. This model is based on expansion of the re-electron energy in terms 
of moments which are also equal to numbers of closed walks in a molecular 
graph. The reference system is established by counting only acyclic walks, i.e. 
those tracing only on acyclic subgraphs. Because acyclic walks could be counted 
only up to some finite length, the energy of the reference system has been 
evaluated by truncating higher terms in the expansion. In this paper a finite 
expression for the energy of the same reference system is derived, thus allowing 
its exact evaluation. The exact values differ significantly from the truncated ones. 
This difference, as well as the discrepancy between exact results ~,nd chemical 
experience, are discussed. 
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1. Introduction 

Recently a novel approach to evaluating the resonance energy in conjugated 
systems has been proposed [1, 2]. Generally, the resonance energy (RE) is 
defined as the difference between the total re-electron energy and the energy of 
some reference system. RE reflects the effect of cyclic conjugation in a system. In 
the reference system the influence of cycles has to be suppressed, which can be 
achieved in a variety of ways. 

The use of moments is a convenient means of relating the energy of a 
molecule to its structural details, e.g., cycles. In a graph-theoretical picture, the 
j - th  moment equals the number of closed walks of the length j. The Topological 
Resonance Energy (TRE) model [3, 4] can also be expressed in terms of 
moments which correspond to tree-like walks [5, 6]. In the recently introduced 
TRE* model [1, 2], the moments of the reference system are obtained by 
counting only acyclic walks [5], i.e. those walks in the molecular graph whose 
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projections are only acyclic graphs 1. Because of practical reasons acyclic walks 
are counted only up to some finite length thus allowing only approximate TRE* 
values [1, 2]. In the present paper a method for calculating the exact TRE* 
values is presented. It by-passes the counting of aeyclic walks and expresses 
TRE* in terms of the energies of tile molecular graph and its certain subgraphs. 
The exact values differ from the approximate ones significantly. Moreover, the 
exact results are in contradiction with the chemical experience. 

2. Method 

The Hiickel n-electron energy for the ground state of an alternant hydrocarbon, 
E~, can be written as [7] 

N 

E~ = E Ix~l 

where xi are the eigenvalues of the adjacency matrix of a graph representing a 
given hydrocarbon with N conjugated centers. The function I xi] is approximated 
by means of an even polynomial of degree 2L, viz. 

L 
]xlL = E ag(L) x2g. (2) 

i=0  

The coefficients ai in Eq. (2) are determined by least-squares fitting in an 
appropriately chosen interval ( - 2 ,  +2); in [1] the value 2 = 3 was employed. 
Note that the actual numerical values of the coefficients a~ depend on the 
parameter L. Substitution of Eq. (2) into Eq. (1) yields 

L 
(EOL = E a (L)u2; (3) 

i=0  

where u2i denotes the 2i-th moment 
N 

uz, = E xzi" (4) 
j = l  

It is well known [7] that moments reflect the molecular connectivity, i.e. that the 
j-th moment equals the number of closed walks of the length j. On this basis the 
expansion in Eq. (3) can be transformed into another form which uses the 
occurrence numbers of individual molecular fragments instead of moments [1, 2]. 
In these papers a new way to evaluate RE has been proposed: by excluding all 
cyclic fragments from the expansion, and taking the resulting value as the energy 
of the reference system. Here we consider the equivalent expansion in terms of 
acyclic moments, as has been presented in [5]. 

The closed walks could be partitioned into either acyclic or cyclic walks 
according whether the projection of the walk is an acyclic or a cyclic graph, 

1 The names for the tree-like and acyclic walks are chosen rather inappropriately. The tree-like walks 
[5] never close the cycle in their "walking", and the projections of  the acyclic walks [6] are trees. 
Reversing the names would be more appropriate, but  in the present paper we follow the accepted 
terminology 
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respectively. Therefore, the moments and E~ could be partitioned as well 

t u, = u, + u'/ (5)  

(Er,)L = (Erc)~ cyclic + (E~)~; yclic ( 6 )  

where 
L 

(E~)~Y~'i° = y~ <(I~)u;, (7a) 
i = 0  
L 

(E~)~'cli° = ~ ai(L)u~ i (7b) 
i=0  

and u'i and u / s t a n d  for the number of  the acyclic and cyclic walks of the length 
i, respectively. 

The above partitioning enables one to define a possible measure of the 
resonance energy [1, 2, 5] 

TRE* = E~ - (E~) acy~mi~ (8) 

where the energy of  the reference system, (E~) a°y°li~, is the limiting value of 
(E~)~ cy°li¢ for L ~ ~ .  Up to now TRE* has been evaluated only approximately 
a s  

(TRE*)L -- E~ -- (E~)~ ~y¢li° (9) 

mostly up to L = 6 [ l, 2]. The TRE* values thus obtained resemble the results of 
the TRE model. 

A question has been raised as to whether TRE* could be evaluated exactly 
[5]. In the following text we describe the method which overrides the infinite 
summation involved in the definition of TRE*, Eq. (8), and enables one to 
calculate it in a completely different and exact manner. 

Let us begin with some definitions. A graph G is defined as an ordered pair 
G = (V, E); V = V(G) and E = E(G) are the sets of its vertices and edges, 
respectively. A subgraph of G is a graph whose vertices and edges belong to 
subsets of  V(G) and E(G), respectively. A subtree of G is a subgraph which is a 
tree. If  a subtree of G contains all vertices of G, then it is called a spanning tree 
of G, and denoted by T. The intersection graph H = G1 ~ G2 r~. • - c~ Gm is defined 
by V(H) = V(G1) c~ V(G2) ~ "  n V(Gm) and E(H) =E(G1)  c~E(G2) c ~ . - . n  
E(Gm). In this paper we deal with labeled graphs only; their subgraphs are also 
appropriately labeled. 

Any ( j  + 1)-tuple w = (i o, il . . . .  , / j)  of  vertices of  G such that i~_ 1 and ik are 
adjacent, k -- 1, 2 . . . . .  j, is called a walk of  length j. Note that a walk may also 
be viewed as the j- tuple of edges i~_ 1 - i,. A walk in which the first and the last 
vertex coincide is called a closed walk. We emphasize that the definition of a 
walk allows backtracking. For  each walk w of G, its projection ~ is defined as 
the subgraph of G having all vertices and edges contained in w, and only those 
vertices and edges. By W(G) we denote the set of all closed walks which can be 
generated on a graph G, and by wa~(G) its subset of  acyclic walks. 
W(T1, T2 . . . . .  T~) stands for the union of  sets W(T1) , W(T2) . . . .  , W(T~), 
n = number of  spanning trees of G. Thus W(T1, T2 . . . .  , T,) is the set of closed 
walks of all spanning trees. 

Examples depicted in Fig. 1 illustrate various types of  closed walks; w~ and 
w2 are cyclic walks, while w3 is an acyclic walk. Note that w2 does not close any 
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wl = {a,b,c,d,e,b, ct} 

w2= {a,b,c,d,c,b, e,d,e,b,a } 

w3= (a,b,c, b, e, f,e, b,a } 

b e 

d 

b e 

D. Babic et al. 

Fig. 1. Examples of dosed walks and their 
projections illustrating the difference between 
cyclic and acyclic walks 

cycle during its "walking", but is classified as cyclic because the criterion is based 
on the presence (or absence) of cycles in its projection, #. 

In deriving our method for the exact evaluation of TRE*, we recognize that 
the set of acyclic walks of G is equal to the set of closed walks of its spanning 
trees. 

First, let us show that each acyclic walk of G is contained in the set of all 
closed walks of some spanning tree T of G. We regard as obvious that W ( T )  
contains w if the projection ~ is the subgraph of T. Since the projection of the 
acyclic walk is a subtree (by definition), it is sufficient to show that each subtree 
of G is a subgraph of some spanning tree of G. Let us construct a spanning tree 
of a connected graph G in the following way. We start from the graph which 
consists of all vertices of G and only those edges which are present in a given 
subtree. This means that all vertices which are not in the subtree are isolated. We 
gradually connect the isolated vertices with the subtree by adding edges from 
E ( G )  using exactly one edge per isolated vertex. First we join the subtree with the 
vertices which are its neighbors in G, then the augmented subtree with its 
neighbors, and so on. Ultimately, this growth procedure yields a fully connected 
graph (since otherwise G would not be connected). This graph contains no cycles 
because the starting graph was acyclic and each new edge has been inserted only 
between the (growing) subtree and an isolated vertex. Therefore the resulting 
graph is the spanning tree of G, and it is clear that it can be obtained starting 
from any subtree of G. This proves the statement that each subtree of G is a 
subgraph of some spanning tree of G, and consequently that closed walks of 
spanning trees contain all acyclic walks of G: 

wac(G)  ~ W ( T 1 ,  T2, . . . , T , ) .  (10) 

On the other hand, each closed walk of a spanning tree is equal to some acyclic 
walk of G. It follows from these facts that (1) the spanning tree is a subgraph of 
G, and (2) the projection of each closed walk of this spanning tree is a tree. This 
means that 

W ( T I ,  T 2 . . . . .  Tn) ~ wac(G).  (11) 

From relations (10) and (11) follows that 

WaC(G) = W(T1 ,  T2, . . . , 7",). (12) 

Whence the problem of enumerating the acyclic walks of G is equal to the 
problem of enumerating the closed walks of all spanning trees of G. This latter 
task is much easier to solve. 

To count the cardinality of W(T1, T2 . . . . .  Tn) one has to take into account 
partial overlapping of the sets W(T1) ,  W ( T 2 )  . . . . .  W(Tn) .  In other words, the 
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same closed walks may be generated on more than one spanning tree. To resolve 
this problem we prove the following equation: 

W(Ti )  n W(T j )  = W(T,  n Tj). (13) 

The intersection graph T~ n Tj is the subgraph of both 7",. and Tj, therefore all 
walks of T in  Tj are also the walks of Ti and Tj. Further, equal walks of T~ and 
Tj have equal projections which must be the subgraph of Ti n Tj according to the 
definition of the intersection of graphs. Hence, all walks which are present in 
both 7,- and Tj are also the walks of their intersection graph. This proves Eq. 
(13). 

The well known inclusion-exclusion principle [8] reads as follows: 

I w(v,) ~ w ( v : ) ~ . . . ~  w(v.)l = E [w(r , ) l -  E I w(r,) ~ w(5)l 
i i <j 

+ Z [w(ri)~w(~)~w(rk)l... 
i<j<k 

-(-1)nIW(T1)n W(T2) n'--nW(T.)[. (14) 

We have shown that the left hand side of the above equation equals [WaC(G)l . 
The application of Eq. (13) to its right hand side gives 

Iwac(G)J=~,,IW(Ti)]- ~ IW(TioTj)I+ ~ IW(T,  n V j n T k ) l  I 
i i<j i<j<k 
-- ( -- 1)']W(T1 n T2n '  • • n T.)[. (15) 

The last equation holds for any subset with walks of a given length l, so that we 
may immediately write 

u; = Z u , ( T i )  - Z u l ( T i n T j )  + Z u l ( T i n T j n T k )  . . . .  
i i<j i<j<k 
-- ( -- 1)nUl(Tl n T z  n . . . n "1".). (16)  

By substitution into Eq. (7a), and after some rearrangement, we obtain 
L L 

(E-)~ cyclic = ~ Z a21(C)u21(Ti) -- Z Z a21(L)u21(Vi n Tj) 
i I=o i<jl=O 

L 

+ ~ Y..~,(L)~:~(5 ~ L ~ 7~) . . . .  
i<j<k I=0 

L 
-- ( -- 1)" ~, a2,(L)u2,(T1 n T2n. • • n T,). (17) 

/=0 

According to the starting assumption about the relation between E, and the 
graph moments, we finally arrive at the desired expression: 

(Eu)  acyclic= ~ En(Ti ) -  ~ Eu(Ti(~Tj)~- ~ Eu(Ti("sTj()Tk) . . . .  
i= l  i , j=l i,j,k=l 

(i <j) (i <j < k) 

-- ( -- 1 ) 'E , (T ,  c~ T2n" • • n T,).  (18) 

Each term on the right hand side represents the E. of a certain acyclic subgraph 
of G. If  this subgraph consists of more components, its energy is equal to the 
sum of energies of the components. 



408 D. Babic et al. 

3. Results 

Although applying Eq. (18) to the calculation of E acyclic seems to be straight- 
forward, this is not the case. This is because the number of  subgraphs which 
have to be generated and whose spectra are to be evaluated is equal to 2". This 
is a forbiddingly large number even for molecules of moderate size. For instance, 
naphthalene has 35 spanning trees implying that over 3.4 x 101° subgraphs have 
to be taken into account. 

Fortunately, it is possible to reduce this number substantially by exploiting 
the fact that the same component may appear in intersections with opposite 
signs. As a consequence, numerous terms in Eq. (18) will cancel out making the 
calculation of E aeydic a feasible task. This is illustrated by the example given in 
Fig. 2. A comprehensive analysis reveals a formula which enables us to predict 
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Fig. 2. Acyclic subgraphs for the example graph G being included in the evaluation of the energy of 
the reference system. The sign at the beginning of each row stands for the sign with which E~ of the 
subgraphs depicted in the row enter into the summation of Eq. (18). The components whose 
contributions cancel out are encircled. The final expression for E~CYCllC(G) contains only terms which 
remained after cancellation 
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Table 1. Resonance energies per electron of  some conjugated molecules calcu- 
lated by exact and approximative formulas for TRE*,  and by TRE model 

Molecule TREPE* (TREPE*)L = 6 a TREPE b 

[• - 0.030 - 0.046 - 0.027 

- 0.009 0.006 0.009 

- O. 190 0.069 0.046 

0.006 0.017 0.007 

[ ~ /  0.009 - 0 . 0 2 7  0.012 

0.006 0.018 -- 0.031 <Y 
0.022 0.016 0.003 

--0.374 --0.019 - 0 . 0 2 7  (Z? 
~ -0 .403  0.042 0.039 

~ ] ~  - 0 . 2 9 8  0.013 0.015 

a Ref. 1 
u Ref. 6 

which molecular fragments will survive in Eq. (18), and to determine coefficients 
which multiply their E~ contributions. Thus, instead of using Eq. (18), one 
generates molecular fragments and multiplies their E~ by an appropriate co- 
efficient. Due to the lengthy proof of the method, its details will be communi- 
cated in a separate publication. 

By means of this shortcut we were able to calculate the TRE* values of the 
molecules listed in Table 1. For annulenes the method renders an especially 
simple formula: 

EaCyclic(CN) = N[E,~(Par  ) - Er~ (PN_  1 )] 

where CN and PN denote the circuit and the path, respectively, with N vertices. 
The topological resonance energies per re-electron in the TRE* model, TREPE*, 
for CN, N = 3-18 are depicted graphically in Fig. 3. 

We first call attention to the differences between the exact and approximate 
values of TREPE* listed in Table 1. One is forced to conclude that for L = 6 the 
approximate values reproduce the exact ones poorly. In fact, (TREPE*)L= 6 
shows better agreement with the TREPE values than with the exact ones. This 
seems to be a consequence of the fact that the moments corresponding to acyclic 
and tree-like walks start to differ when the walk length equals either the size of 
the smallest even membered cycle, or the double size of the smallest odd 
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Fig. 3. TREPE* values for an- 
nulenes plotted against the ring 
size N 

membered cycle, whichever is less. The difference is small for lower moments and 
increases for higher moments, b u t  this is compensated by a simultaneous 
decrease [1] of their weights, a2i(L) in Eq. (7a). 

One might expect that by letting L go to infinity a valuable estimation of RE 
could be achieved; note that the positive values of RE correspond to stabiliza- 
tion, while the negative oneg indicate the destabilizing effect of cyclic conjuga- 
tion. From Table 1 one immediately sees that benzene, naphthalene and azulene, 
which are known for their stability and aromatic character, have large negative 
TREPE* values. A similar contradiction may be seen in Fig. 3, which shows that 
4n + 2 rings have negative TREPE* values, while for all odd membered rings 
they are positive. This is contrary to the widely confirmed 4n + 2 rule [9]. Recent 
results by Shaik et al. [10] bring in a qualitatively different picture of a 
delocalization in which a dominant role is played by a-electrons. It has been 
shown there that g-electrons are equally reluctant to achieve delocalization, 
irrespective of the ring size, while the o'-framework exhibits a reasonably strong 
tendency towards symmetric geometry, thus favoring delocalization. From this 
viewpoint the exact TRE* values would seem reasonable and are in even better 
agreement with modern theories of resonance than the older concepts. However, 
this agreement could also be a mathematical artifact, and more extensive study 
is needed. 

It is interesting to note that the two models, TRE and TRE*, start from 
similar ideas. The TRE model excludes all cyclic components from the set of 
Sachs graphs, thus giving the coefficients of matching polynomial whose zeros 
represent the energy levels of the reference system [3, 4]. The TRE* model, as 
was mentioned earlier, excludes all cyclic subgraphs in the expansion of E~. At 
the first glance these two approaches seem to be equally reasonable and it is not 
clear a priori  which of them should render better agreement with chemical facts. 
The present analysis shows that for certain, hitherto concealed, mathematical 
reasons, the TRE* model gives unexpected results for larger values of the 
parameter L. The invalid results of the TRE* model point out the sensitivity of 
the calculated RE on the way of accounting for the effects of cyclic conjugation 
and also put some more weight on the earlier TRE approach [3, 4]. 
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